Custom Search

Wednesday, April 1, 2009

Return To Castle Intel: 16 Years Of Motherboard History

Return To Castle Intel: 16 Years Of Motherboard History
Integration takes another hop on Seattle, this time in the form of a pair of USB ports, so new at this time that hardly any devices were available to use them. The USB functionality derived from the PIIX4E southbridge controller. Even more significant was the 440BX northbridge, which was the second from Intel to support Accelerated Graphics Port (AGP). The AGP slot is peeking out to the left of the Slot 1 interface.

Return To Castle Intel: 16 Years Of Motherboard History


Return To Castle Intel: 16 Years Of Motherboard History
You’d think that our first Intel board code-named for a place might have been Santa Clara, Hillsboro, Portland, or some other major Intel location. But no. The first quarter of 1998 brought us Seattle, Intel’s first board to make it to a 100 MHz front-side bus (FSB). This was also the company’s time-to-market board for supporting the Pentium II launch. Hmmm, where is that CPU socket? Oh, right—there wasn’t one! Instead, we had the Slot 1 design supporting processor cartridge packages often informally known as “candy bars.” Launch speeds of the 100 MHz bus parts were 350 and 400 MHz.
Compared with Thor, you can see that Seattle is a cleaner board. A lot of the extra and oversized chips are vanishing. All of those real estate-sucking memory chips are gone, for instance, although 512KB of L2 cache is still on the motherboard, and large capacitors are starting to crop up like mushrooms around the CPU slot. Note again that we have a shared PCI/ISA slot, this time second in from the far edge.

Return To Castle Intel: 16 Years Of Motherboard History

Return To Castle Intel: 16 Years Of Motherboard History
Looking behind the board, it’s a little miracle--the birth of motherboard integration. Forget those Super I/O cards. Now we have integrated serial, parallel, and game ports. Remember 15-pin game ports for joysticks (support for these disappeared under Windows Vista)? Under the game port, behold—three audio jacks fueled by a Crystal Semiconductor ASIC mounted under the third and fourth PCI slots. In the bottom-right of the image below, you can also see the four-wire audio header for connecting to the CD-ROM so systems could play music discs.

Return To Castle Intel: 16 Years Of Motherboard History

Return To Castle Intel: 16 Years Of Motherboard History
There are a lot of nifty tidbits on this board. The Socket 7 design was novel, not only because it provided split rail voltage—what? over 10 years before AMD made a fuss about Barcelona’s split rail power?—but it was also backward compatible with Socket 5 CPUs. Imagine that, a backward compatible CPU socket. Better yet, Socket 7 worked with processors from AMD, Cyrix, IDT, and others. True, friendly, open craziness. No wonder it didn’t last. And hey, believe it or not, those are Sony 32-bit SRAM chips sitting alongside the CPU socket.

Return To Castle Intel: 16 Years Of Motherboard History

Return To Castle Intel: 16 Years Of Motherboard History
By the beginning of 1996, the industry was in clear need of a return to the simple form factors that made AT and Baby AT desktops so easy to work with, only without AT’s legacy technologies. Intel had released the first specification for ATX in 1995, and Thor was the first Intel board to use the new form factor. While ATX has been updated a few times, the form factor, along with its microATX derivative, still remains the dominant format used in PCs today.

Thor featured a maximum bus speed of 66 MHz for Socket 7 Pentiums and up to 128MB of Extended Data-Out (EDO) SIMM memory. EDO marked a 10% to 15% improvement over the prior Fast Page Memory technology by allowing the memory controller to start a new column address instruction while concurrently reading a different address—multitasking. Of course, this required support in the chipset, and Thor’s Triton (430FX) core logic proved to be immensely popular and really established Intel as a leading chipset company. Triton also supported PCI level 2.0 and pipelined burst cache.

You’ll notice several blank spots on this Thor model. That’s because it was common for Intel, then as now, to produce reference designs that OEMs could then customize to taste. Not everyone needed an extra ISA slot or additional on-board memory.